
±•- _ _ ____ II -

LEVE V
l "I

I

Ott AM£~POVXD onR PUim 1 RAS
DfIMMOUW)Oi tYMLIUI TM)

* **

C>

DTIC
67/ JAN6 11

"D I
Massachusetts
Computer Associates, Inc.

811228 122

Aooohion For

DTIC TAB [J
Unannounced n]Justiftioati on____

_ _ LEVEL-
-iBL -rlbution/ _ \ :/

Availability Codes
Avail and/or

Dist Special

Final Technical Report

Title of Work:

• ... Provide a National Software Works (NSW)
Framework and Machine Connections

February 17, ,976
CADD-7602-1714

Name of Contractor: Massachusetts Computer Associates, Inc.

26 Princess St., Wakefield, Mass. 01880

Principal Investigator: Stephen Warshall - 61 7 - 2 45- 9 5 40

Project Scientist: Stephen Warshall - 617-245-9540

Effective Date of Contract: 30 June 1974

Contract Expiration Date: 30 June 1975

Amount of Contract: $698,548.00

Contract Number: F08606-74-C-0068 T
Program Code Number: 4P40 -ELECTE

b IJAN 6 1982

Sponsored by .- J
Advanced Research Projepts ency I

ARPA Order Number'2832

The views and iclusions contained in this document are those of'
the authors and should not be interpreted as necessarily representing
the official policies, either expressed or implied, of the Advanced
Research Projects Agency or the U.S. Government.

~4z

/ TABLE OF CONTENTS

: hapter 0: Introduction to NSW PAGE

4I A General Introduction
0-4

•' [4.4 purpose
0-11

3• .2 Design

2. File System
0-3

2.1 Design Considerations 0-3

2.2 Design Solutions 0-3

3. Communication System
0-5

3.4 Goals
0-5

3.2 Decisions
0-5

4. User-Terminal Catering 0-6

S4.4 Situation 0-6

I [4.2 Decision 0-7

5. Executive Commands
0-9

S 6. Tool Interface
0-10

6.1 Design Considerations 0-t0

6.2 Design
0-14

CHAPTER 1: Works Manager Procedures

Introduction

2. Frequently-Used Arguments
4-2

3. Works Manager Procedures
4-6

3.4 Connection
o-6

S3.2 Tool Running 4-7

3.3 Files, No Movement
1-9

3.4 Files, Movement

SI

:i I

H I:

Chapter 2: Catalogue Entries and File Names 2-4

S4. Introduction 2-4

b 2. NSW Catalogue Entry 2-2
!i 2.4 Name Part 2-2
2.2 Use-Type 2-2

S2.3 Creator 2-2
Last-Reader 2-3

2.5 Semaphore 2-3
2.6 Time-of-Creation 2-3
2.7 Local-Copy-Entry 2-3
2.8 Ambiguity 2-5
2.9 Public/Private 2-5

3. NSW Filename 2-6
3.4 Syntax 2-6

S3.2 Ambiguity 2-6
S3.3 Retrieval 2-6 :

4. Full NSW Filename Syntax 2-7

SChapter 3: Black Boxes Called by the Works Manager

2. Introduction 3-211.4 What Black Boxes Are 3-1
2.2 Meta-Description 3-1

2. Common Arguments and Data Structures 3-2
32. Introduction 3-2

S2.2 Detailed Descriptions 3-2

•i3. Black Boxes 3-5
3.1 Introduction 3-5
3.2 File Manipulation within a TBH 3-5
3.3 File Manipulation Between TBHs 3-6
3.4 Status 3-7
3.5 Interactive Tools 3-8

Chapter 4: Communication with the PDPII/B4700

4. Overview of NSW Batch Facilities 4-1
1.4 NSW Batch Processes 4-1
41.2 Batch Tools 4-1
41.3 Batch Jobs 4-2
4.4 Job Execution 4-2

2. TENEX IP Design 4-4
2.1 Introduction 4-4
2.2 User/Server Relationship 4-4
2.3 Unsolicited Messages (interrupts) 4-5
2.4 Message Format 4-5
2.5 Handles 4-6

1.i

3. File Transfer in IP 4-7

Part 4 - Introduction and Catalog Subsystem

3.4 Introduction 4-7
3.4.4 CAT Messages 4-7

3.2 Message Description Technique 4--8
3.2.4 CAT Messages 4"8

3.3 BNF 4.9

Part 2 - Transfer of File Contents

3.4 Introduction 4-1 3
3.5 File Transfer Sequeno 4- 42
3.6 FTS Messages 4.-3 3

3.6.1 BNF 4.46 1

3.7 Batch Job Execution Under IP 4-37
3.8 IP System Messages 4-19

.II

"i~

!.I

>>> Chapter 0: Introduction to NSW PAGE 0-)

4. A General Introduction

1A Purpose

- he National Software Works (NSW) is a facility, resident on the
Arpanet, intended to support the construction, use, maintenance,
modification, verification, and storage of programs and bodies of
information on which these programs operate. It is principally
aimed at the construction of programs and at providing software
tools which can be used in the construction activity.

[NSW is intended to facilitate both the administrative and

technical aspects of these activities. Thus, it provides
mechanisms for the exercise of fiscal and access control in the
operation of a programming project, and also access and storage
conveniences to programmers for the management of their files.

The salient factor in the conception of NSW is the expect&tion
that the hardware, software, and human resources needed for the
execution of a task may be geographically and administratively

* ,dispersed, although connected through the network. Tools whose
use is to be coordinated may be resident at different computer
installations, possibly under the control of different
organizations, each with its own rules of operation.

1.2 Design

NSW as an entire system contains large collections of information
about its users and the resources belonging to the system; it also
contains the programmatic objects whose execution constitutes tile
operation of the system.

The software animating the NSW is called NSWExec; it is
partitioned into independent processes on different processors in I
the network. These processes have individual names, such as Works

Manager (WM), Front End (FE), Shop Foreman (SF), File Package
(FP), Works Manager Operator (WMO), etc.

NSWExec appears, operationally, as a state-of-the-art time-sharing
monitor. That is, it functions as a keeper and supplier of
computational resources, and as a mediator between the user and
these resources.

The essential functions of a time-sharing monitor which NSWExec is
to provide in the larger network-wide environment are:

Logging in and out -- permitting the user to make, and break,
contact with the monitor, and authenticating his right to use
its services.

Maintaining a file. system, with access protection and

provisions for shared use.

Z-I

>>> Chapter 0: Introduction to NSW PAGE 0-2

Handling I/O with the user's terminal.

Interpreting and honoring the user's requests for resource
usage ("Executive Commands").

Setting a specified program into operation ("running a tool")
at the uSer's behest, and linking his terminal to the program
in case the tool runs interactively.

Since the users, the resources, and the NSWExec software may all
be dispersed throughout the network, creating analogues of these
basic functions of a time-sharing monitor in this environment has
raised some complex design problems. This overview will be
organized as a consideration of these functions in the network
environment, with a description of the design solutions adopted in
the NSW. The functions we shall discuss are:

Maintaining a physically dispersed but conceptually integrated
file system, with adequate access controls.

Managing communication between the separate components of the
system.

Catering to the user at his on-line terminal -- connecting him
to NSWExec, accepting and interpreting his raw input,
protecting him from intervention by non-NSW programs (local
host executives, etc.).

Responding to the user's requests for resource use and
disposition -- i.e., the normal "Executive Commands",
permitting operations on files, inspection of current
information about resources and circumstances, invocations of
tools, etc

Initiating execution of a tool, and providing a File-System
interface so that the tool may obtain the input files it needs
from the NSW File System, and deliver the output files it
produces into the NSW File System, in a manner compatible with

the file-system conventions of the host system where the tool
is resident.

prodces nto he NW Fle Sstem in maner ompaiblewit

>>> Chapter Oz Introduction to NSW PAGE 0-3

2. FILE SYSTEM

2.4 Design Considerations

As does any contemporary Operating System, NSW provides a file
system to its users, with naming conventions, protection, access
controls, and facilities for entering, deleting, copying, and
renaming individual files. However, it had been determined at the
beginning of the design that NSW would not "own" any on-line
storage device, dedicated to the storage of NSW riles.

A principal element of the NSW concept is to both facilitate and
constrain file access and rile sharing by the members of a
programming project, in a manner which will allow the
implementation of a wide variety of management policies. To this
end, NSW has its own file-naming conventions and mechanisms for
verifying access rights which are rather different from those of
the hosts' operating systems.

In any c,.se, the user must not be required to have any knowledge
of the individual file systems on the hosts; rather, he must be
able to use a uniform file-system vocabulary in any reference to
his files, regardless of what component of NSW he is communicating
with.

2.2 Design Solutions

The files in the NSW File System actually live in the -arious file ,
systems of Arpanet hosts: on any host which can provide storage
for NSW files, NSW "owns" one or more directories (accounts), with
the maximum protection available, in which it keeps its files.
Hosts providing file storage are called "Storage 4osts". There is
also a "principal NSW 1-ý%st" in the Arpanet. This is the host on
which the central elements of the NSWExec software are executed --
in the current implementation, a TENEX.

NSWExec contains an information retrieval system, resident on the
principal NSW host in the Arpanet. The data base of this
information retrieval system does not contain the NSW files
themselves, but rather it constitutes the catalogue of the File
System. Every file name known to the NSW File System has a record
in this catalogue; part of the information in the entry for a
particular file gives the location (identity of the host, plus
file identification within that host's system) of any existing
copies of the file itself. Note that the existence of multiple
copies of a file is information which is not normally available to
users.

bw- I

L r i
>>> Chapter 0: Introduction to NSW PAOE 0-4

Some of the operations which the user might wish to perform on
files can be done merely by making changes in the catalogue, such
as deleting a file, renaming a file, or removing a semaphore
(access lock) which he had had set on a file; the user, of course,ooes r,ot directly access the cataloguez. But others require

operations on the bodies of the files themselves, such as making a
copy of a file within the NSW file system, importing a file from
outside the NSW system, or exporting a file to a destination
outside NSW.

For these operations of making physical copies of files, NSWExec
calls upon a "black box" called the File Package, whose job is to
understand file transmission across the Arpanet so thoroughly that
it can accomodate any likely formats and perform any reasonable
conversions necessary to cause a copy of a file at one place in
the network to appear at another place.

The portion of NSWExec software which includes the file-catalogue
information retrieval system is called the Works Manager (WM). It
has a number of other functions, which we shall discuss at the
appropriate places in this Overview. The host on which the WM
runs -- called above "the principal NSW host" -- is termed the "WM
host", in distinction to other host3 participating in NSW, such as
a "Front End host", or a "Tool-bearing host".

The two NSWExec components mentioned in this section -- the Works

Manager(including especially the file catalogue system) and the
File Package -- are clearly new programs which have had to be
written for NSW.

A

>>> Chapter 0: Introduction to NSW PAGE 0-5

3 COMMUNICATION SYSTEM

3.4 Goals

For acceptable operation the network connection between the user's
terminal arid whatever system he is communicating with should be a
fast, character-by-character, full-duplex link. But such links
are expensive in Arpanet, in terms of traffic loads and response
time, so they should be direct, and used only when a person is at
one end of the connection.

Nonetheless, there will need to be frequent communication between
the dispersed software components of NSW, and this communication
should be as efficient as possible.

Normally, a program on a time-sharing system can be executed only
by a logged-in user of that system. Within NSW, the user should
only have to log in to NSWExec itself and not to any of the
individual Tool-Bearing Hosts (TBHs).

3.2 Decisions

The individual components of NSW software will be configured as
independent, coordinate, concurrent processes (even if they happen
to reside on the same host).

The standard communication between two NSW processes will be by
unitary messages, expressed in one of the PCP (Procedure Call
Protocol) message formats (B8 or B36, as approoriate), and
dispatched through a message-handler (named MoG), which is itself
an independent process on each host participating in NSW.

A process, then, does not call another as a subordinate, or
subroutine. Rather, it sends a message requesting a service,
and later receives a message in response.

Two NSW processes may establish a direct networkconnection, if
desirable for terminal response or for transmitting large
volumes of data. But the initial communication between them,
and the agreement to set up the direct connection, are
accomplished via MSG.

In the Aroanet implementation, the several MSGs are privileged
processes on their hosts, with exclusive rights to reserved
network sockets. This permits bypassing the local host's login
procedure when executing a process on that host.

MSG is a new program, written for NSW.

>>> Chaptei, 0: Introduction to NSW PAGE 0-6

4~. USER-TERMINAL CATERING

4.4 Situation
The user must be able to get in touch with NSWExec in a reasonably

straightforward fashion, preferably without having to log in to
any other systems along the way.

As discussed above, the direct connection between the user and
NSWExec should be a fast, character-by-character full-duplex link
(for most terminals), so that the user will receive rapid and
convenient response to his typeins. It should include

Character echoing, perhaps with substitution for the input
character, and suppression of echoing for passwords, and

Basic editing facilities, such as the ability to backspace
(delete) a character or a word, retype what has been typed for
inspection before confirming, or kill what has been typed so
that the user can start over.

Any process the user may be connected to is actually running on
some Arpanet host, under the host's own operating system.
Operating systems generally have some reserved character which,
when received from the terminal, causes them to interrupt
communication between the terminal and the running process in
order to allow the user to communicate directly with the operating
system. The NSW user must be protected from the consequences of
mistakenly typing such a character.

Conversely, if the NSW user is in communication with some process
other than NSWExec, there mUst be some action he can take to
temporarily suspend his communication with that process in order
to communicate with NSWExec. Such actions (e.g., typing a special
character) must be intercepted before they are transmitted to the
connected process.

But the user will, in general, be only indirectly connected to tne
WM host, so that, if these terminal-catering functions were to be
performed at the WM host, the response would be unacceptably slow.

Aside from these user-catering functions, the principal content of
the communication between the user and NSWExec will be the the
user's calling for the execution of executive commands (see
below), and WMExec's displaying the response to these commands on
the user's terminal. The amount of information necessary to
specify such commands is not large, and the display of NSWExec's
responses does not require two-way communication.

>>> Chapter 0: Introduction to NSW PAGE 0-7

4.2 Decision

The user-catering function of NSWExec will be placed in a separate
process, called the Front End (FE), to which the user will always
be connected, and which will run on a machine as "close" to the
user as possible.

In the initial system, the FE process resides on the principal
NSW host; a user can achieve connection to this FE by either:

Logging in to this host in the normal fashion, CONNECTing to
the appropriate directory, and running the program NSW;
(this mode of operation will always be present as a
fall-back option)

Executing, from his local host or TIP, an Initial Connection
Protocol to a reserved socket on the NSW host.

In an early stage of development, the FE will run on a
dedicated minicomputer, connected to the Arpanet either as a
local host (through an IMP) or directly as a "smart TIP". The
user will be have a broad-band connection to this minicomputer.

However the user's connection to the FE process is achieved, he
will immediately be permitted (in fact, required) to LOGIN to
NSWExec, identifying himself and giving a passwor:d. When the
LOGIN is accepted by NSWExec, he will be able to issue any
Executive Commands.

The FE process provides echoing on the user terminal, recognition
and completion of abbreviated command words (if the user desires),
editing functions on the user's typein, and more sophisticated
display-control functions.

In the standard mode of operation, when the user is communicating
with NSWExec on with "integrated" tools, the user's interactlons
with the terminal are driven by a "grammar" contained in the FE
process, which elicits from the user the information needed to
specify the operation he wishes performed. This information is
tnen packed into an message and expedited through MSG to the
appropriate recipient (Works Manager or tool).

An "integrated" tool is one which in fact handles its
communications with the user in the above fashion -- via MSG.

A tool which has not been "integrated" is called an "old" tool.
It will be put in contact with the user through a direct TELNET
connection between the FE process and the tool process. Thus
another feature of the FE is that it can est'ablish and maintain
this TELNET connection.

)>> Chapter 0: Introduction to NSW PAGE 0-8B

In the s.andard mode of operation, no danger exists that the user
might send to the tool some special character which would place
him unwittingly in contact with the tool-host's Operating System.
In the TELNET-connection mode, either the FE or the Shop Foreman
(see below) must filter out any such characters.

In either mode pf opert. Ion, a reserved special character will be
recognized by the FE process, having the effect of temporarily
suspending communication with the tool, and returningcommunication to NSWExec.

For the duration of his session with NSW, all communication
between the user and the system will thus be mediated by the FE,
whether the user is conversing with the Works Manager or with one
or more tools. This provides a consistent style of interaction
with all elements of NSW, except perhaps from some "old" tools
which will have their own conventions which the user must obey.

The FE Process is new software, designed and programmed by Charles
"Irby at SRI/ARC, who also designed and implemented the language
for specifying grammars, the compiler for that language, and the
interpreter for the compiled grammars.

Iii
tI

I..

II

Lb __

>>> Chapter 0: Introduction to NSW PAGE 0-9

5. EXECUTIVE COMMANDS

5.4 The component of NSWExec which implements the user's Executive
Commands is called the W'orks Manager (WM). It resides on the
principal NSW host, which is therefore called the WM Host.

The formats of 'the Executive Commands are specified in1 the
Executive Grammar, which is always available to the FE Process.
When the user has specified a command to his, and the FE's,
satisfaction, it is packaged into a message which amounts to a

* call on some procedure within the WM; this message is then sent
from the FE to the WM via MSG.

*5.2 Executive Commands are essentially requests for the use of
computing resources (including requests to inspect the status of
resources). Hence the WM is fundamentally a purveyor and allocator
of resources.

The WM maintains in its data base lists of the rights, privileges,
and responsibilities of the users krioi '' the system. When the
user logs in, his right to use NSW is .thenticated by checking
this information. Whenever he requests the use of any resource,
his right to use it is verified against these lists.

As mentioned above, the WM maintains in its data base the
catalogue of the file system, arnd uses this to control the '
existence of copies of files on different hosts in the network.

The catalogue, together with the user's rights information, allows
the WM to control access to the files in the system.

The WM also maintains information on, the tools available within
NSW, which enables it to cause a tool process to be created and
run on its appropriate host. This information, together with theusr' rghs normation, allows the WM to control access to the
tools.

5.3 As part of its resource-managing responsibilities, the WM1
provides to the (human) managers of programming projects within NSW
facilities for admitting new users to the system, arid specifying the
rights the new user shall enjoy.

These management facilities will in fact be embodied in a separate
"Management Tool", access to which will be restricted by the
right~s of the user seeking to execute it, as with any other tool.

5.4 The types of Works Manager commands are discussed in Chapter 1,
"Works Manager Procedures."

>>> Chapter 0: Introduction to NSW PAGE 0-10

6. TOOL INTERFACE

6.4 Design Considerations

In a contemporary interactive computer system, a tool runs under
the control of the Operating System on its computer; the Operating
System provides to the tool:

Means for communicating with the user's terminal;

Means for using the file system;

Other miscellaneous services more directly associated with the
hardware, such as memory allocations, interrupt servicing,
date-and-time and elapsed-time information, etc.

In the course of its operation, the tool will interact with the
file system in several different ways:

It will neced to open for r 'eading (or modification) some
already-existing files (input files).Al

It will need to create scratch 'Piles for temporary storage of
information during its operation (and perhaps for re-start
after a crash).

It may produce new files (or modifications of input files)
which are to be delivered to the file system after the tool-run
is completed (output files).

In' NSW, where the tool, the user, and the "Operating System"
(NSWExec) are, in principle, all on different network hosts,
several considerations apply:

Communication between the tool and the user is handled through
MSG (perhaps plus a TELNET connection), as discussed above;
hence tool/user communication must be diverted from the host
OS's terminal-handling mechanisms to some other process.

The tool's input files must come from the N4SW File System, and
not from the host's own file system, hence requests for input
files must be diverted from the host OS to the WM. However,
once the tool has obtained the file from the NSW File System,
it must be able to work within the local file system for
operations within the fPile -- reading or writing at particular
locations within the file.

But to use the NSW file system for the storage of scratch files
would be grossly inefficient, requiring frequent WM calls, and
frequent updating of the W's File System catalogue; hence,
the tool should continue to use the host file system for these.

>>> Chapter 0: Introduction to NSW PAGE 0.-11

To keep the tool operation integrated within NSW, the tool's
output files must be submitted to the NSW File System for
storage. Hence, calls to the host OS to close, or deliver,
output files must be intercepted and re-.directed to the WM.

The last category of local OS services -- the miscellaneous
ones -- must clearly be left intact, since it would be either
impossible or expensive to provide them from the WM.

Since it is intended to be an easy task to adapt an existing
program to run as an NSW tool, it is obviously desirable to
minimize the amount of programming required to do this.

For instance, a tool should not have to include the software
necessary to send and receive MSG messages.

6.2 Design

A new program, called the Shop Foreman (SF) must be written to run
on each host which will provide tools.

The SF has at its disposal a number of empty file directories
(accounts, workspaces) within the local file system, which it
will provide to tools running on that host.

When the WM has decided to r ia tool on a particular host, it
sends a message to the SF on that host, asking it to load and
start up an instance of the tool process. The SF will select
one of its local directories and assign it for the tool to run
"out of" (or "in").

Wheh the tool wants to Open an input file, it has presumably
gotten the NSW Filename of the file from the user. It passes
this name to the SF, requesting the file. The SF then sends a
message to the WM*, requesting that a copy of the file be sent
to the local directory assigned to the tool. When the copy has
arrived in that directory, the SF returns to the tool the local
directory name of the copy, which it will have "opened" for the
tool in the local file system.

And similarly, when the tool wants to Close an output file, it
passes the local directory name of the file, together with the
NSW Filename the user has given, to the SF. The SF, in turn,
sends a message to the WM, "Delivering" the file to the NSW
File System -- that is, requesting the W14 to make a copy of the
file in one of the 145W's own directories on some host (perhaps
the same host, if it is also a NSW Storage Host).

When the tool is ready to stop running, it notifies the SF so
that control of the communication link to the user is not
returned to the local OS.

>>> Chapter 0: Introduction to NSW PAGE 0-12

Old tools which are to be made to run under NSW will need to be
modified only to the following extent:

Points of communication between the tool and the user terminal
must be detected and modifiedin one of two ways:

If it seems feasible to structure the communication in
message blocks, these messages should be composed for
transmission via MSG.

If, however, it is necessary to maintain TELNET-style
single-character communication with the user, "system calls"
for implementing this must be replaced by accesses to the
TELNET connection to the FE.

Each file used by the tool must be identified as an input file,
an output file, or a scratch file.

All places where the tool Opens an input file -- i.e.,
requests by name a (presumably) pre-existing file from the
local file system -- must be identified and replaced by
calls on the SF.

All places where the tool Closes an output file -- i.e.,
delivers a file name and contents for storage in the local

kd file system -- must be identified and replaced by calls on
the SF.

The tool must notify the SF before terminating its execution.

LL

>>> CHAPTER 41: Works Manager Procedures PAGE 4-41

CHAPTER I

A Summary of Works Manager Procedures

4. Inroucio

The Works Manager (WM) is the central sof'tware of' NSWExec. Its job
is to authenticate users' interactions with NSW, to carry out executive
commands, and to control access to all NSW resources.

Operationally, the Works Manager is a "server process", which is

brought to life when a "1WM Call" is made by a Front-End (FE) process or
a Shop-Foreman (SF) process: there exists no single Works Manager
Process which remains continuously alive while dealing with multiple
petitioners, as is the case, for example, with the MSG and FE Processes.

From outside, the Works Manager appears as a collection orK separately-callable procedures, each performing a speciric function.
Coordination or the separate procedures and synchronization or separate
incarnations or the WM process are effected by jointly-accessed,
interlock-protected, data structures. Each WM Call, either from a FE or
a SFp is a call on a specific one or these procedures.

The principal shared data structure is the Catalogue in. the NSW
V Information Retrieval System, which contains all the long-lived data

about all elements or NS5W. This Catalogue is described (to some
extent) in Chapter 2.

Furthermore, whenever NSW is in operation, there are tables or
current data, residing in the WM Host, which depict the momentary
state or NSW -- e.g., a list or users currently logged in, a list or
the tools currently running, etc. Almost every WM Call will result
in some change being made to one or more or these tables. It is
these "hot" tables which give the appearance of' continuity or service
by "the" WM on behalf or a user.

The purpose or this chapter is to list these WM Procedures and give
a brief description or their effects.

Since there are a number or items or information~ which are
[fr'equently used as arguments or call, or returned as values, by these

procedures, these are discussed in a preliminary section. The full
"meaning" or these data items may not be clear, however, until their
pattern or use has been shown in the e.7- .ion or the procedures
themselves.

Some or these procedures can meaningfully be called only from a
Front-End process (e.g., LOGIN, LOGOLJT), and others only from a
Shop-Foreman process (e.g., OPEN, DELIVER); the remainder may be
called from either source. It will be indicated ror each procedure,
explicitly or implicitly, where it may be called from.

>)> CHAPTER 1: Works Manager Procedures PAGE 4-2

This chapter, then, is a programffisr's overview of the calls
which the WM will accept from other processes. It will be the task
of a different writing to re-assort (some of) this same information
(and add more) to describe the "Executive Commands" which the user is
told he may employ in communicating with WMExec.

2. FREQUENTLY-USED ARGUMENTS

userid: INTEGER

The internal WM identifier of a logged-in user. It is assigned to
the user at login by the WM, and is thereafter regularly used in all
*messages between the FE and the WM, so that each can be sure which

, user the message refers to.

id: (userld 10)

WM procedures which can be called from either the FE or a tool
require "id" as their first argument. If, in an actual call, the
first argument is non-zero, then it is a userid, and the call is from
a Front End. If it is zero then the call is from a tool. WM
procedures which show "userid" as first argument can only be called
from the FE. If any other first argument is shown (except for the
procedures LOGIN and REATTACHTONSW which are only FE-callable), then
the WM procedure can only be called by a tool.

cost: INTEGER

cost is returned by several WM procedures. It is to be interpreted
as the cost in cents of the use of a tool or of an entire session, as
appropriate. The user is given the opportunity to gripe about the
cost by returning a non-null message when invited to protest.

tool-name: STRING

The name, e.g., NLS, TECO by which a tool is known to the WM.
Retrievable under this tool-name in the WM Catalogue is a large block
of data called the Interactive Tool Descriptor. This descriptor
supplies whatever information the WM needs for successfully running
the tool and servicing its file requests. More specifically, it
lists the ARPAnet hosts (called "Tool-Bearing Hosts" (TBHs)) and
process identifications of potential instances of the tool so the WM
can cause an instance of the tool process to be readied for execution
(see RUNTOOL); and it lists the file-attributes required for input
files an(those to be attached to output files (see OPEN and
DELIVER).

tooluse-name: STRING

The name by which a particular instance of a given Lser's active tool
is known. This argument is necessary to distinguish between, e.g.,
different concurrent uses of NLS.

>>> CHAPTER 1: Works Manager' Procedures PAOE 1-3

NSW-filename: STRING,

NSW-filenames are discussed in Chapter 2. For the purposes of this
chapter, a brief description of the form of the name will suffice.
The "NSW-filename" is the full identification of the file in the NSW
File System, which could amount to a rather long string of text.
However, the user will never have to type in a full filename:
instead, he will use either a "filespec" or an "entry-name",
depending on the intended use of the file (see these terms below).

A (full) NSW-filename consists of two parts: the name-part, and the
attribute-part, separated by a slash (I). The name part is a
sequence of name-components, separated by periods (.); the order of
the name-parts is significant. The attribute-part is a list of
attributes, separated by semicolons (;); the order of the attributes
is not significant. A file name might be enclosed in angle-brackets
(< , >); if it is, the filename proper might be terminated by a
comma (,), allowing additional information, meani4 ngful to tools
(though not to NSWExec), to be included in the brackets.

An example of a full NSW-filename might be:
IVTRAN.PHASE1.PARSE.SYMBOL-HASH/

BCPL-SRC;CR:ILLIAC+BOLDUC;DTC:1975:08:25:.6:03:38

Name-parts do not necessarily designate unique files. NSW files have
attributes and certain of these attributes (those supplied by tools)
may be used for disambiguation. Thus it is entiL.ely possible for a
user to have a file with name-part A.B and attribute FORTRAN-SRC
and another file A.B with attribute 360-FORTRAN-REL. The
NSW-file-names of these two files are unambiguous and consist of
name-part/ tool-supplied attributes. E.g., A.B/FORTRAN-SOURCE and
A.B/360-FORTRAN-REL. The tool-supplied attributes consist of those
file attributes which are supplied by tools through WARRANT,
DELIVER, CLOSE. The exact form of the attributes is described in
Chapter 2.

access-type: COPY I DELETE I ENTER

denotes a particular kind of access to the NSW file system.

filespec: STRING

_ _ _ _ _ _ _ _ _ !

- »>>> CHAPTER 4: Works Manager Procedures PAGE 4-4

A filespec is an abbreviated form of an NSW-filename, used in
contexts where the name of an existing file is required -- i.e., COPY
and DELETE accesses. A filespec need contain only enough parts of
the NSW-filename to unambiguously denote the file. As explained
below under "scope", an initial segment of the name-part can be
automatically supplied, and need not be typed by the uý;er. Any
sequence of consecutive name-components which are not necessary for
identifying the particular file may be replaced by three periods
(...). Also, an attribute-part may be typed in a filespec, to
distinguish between two files which differ only in attributes (e.g.,
the source-language and the relocatable binary forms of the sameprogram).

Thus, the file named by the example under "NSW-filename" above, would
be retrieved under the filespec

IVTRAN... PARSE/BCPL-SRC

Any time a filespec is used,'if it does not happen to designate a
unique file, the WM will send to the Front End for diplay to the user
an indexed list of the full filenames of all files which match the
filespec; the user may indiuate which one he intends by responding
with the index number.

More specifically: If the filespec matches a great many files,
the WM Information Retrieval System will protest and refuse to
retrieve them; the user will we asked to submit a more reasonable
filespec. If the filespec matches few enough files to retrieve,
but more than some user-settable limit ("maxlist"), the user will
be informed of the number of files matched, and asked if he wants
to see the list of names. Only if the number retrieved is less
than maxlist will the list be displayed automatically. In any
case, the user has the option, in response to any of these
messages, of entering a different filespec.

entry-name: STRING

An entry-name is an appreviated form of an NSW-fileriame used in
contexts where a new filename is to be created. As described below
under "scope", the contents of the user's ENTER scope will be
prefixed to the entry-name as typed. Aside from this scope
abbreviation, however, the user must type the entire name-component
of the filename -- that is, no ellipses (...) are permitted. No
attribute-part is permitted, either, since the user may not assign
attributes to files (his identity as creator of the file, and the
date-and-time of creation attributes will be appended automatically).

Referring again to the NSW-filename example above, if we assume the
user had an ENTER scope of "IVTRAN.PHASEI", the filename shown could
have been created (minus the "BCPL-SRC" attribute, which could only
have been appended by a tool), using the entry-name

PARSE.SYMBOL-HASH

..>>> CHAPTER .: Works Manager Procedures PAGE 4-5

scope: STRING

Scopes are a method of abbreviating '3SW-filenames for user
convenience. There are three types of scopes -- COPY, DELETE, and
ENTER -- corresponding to the three accoess-types. A user may have
any number of COPY and DELETE scopes active, but only one ENTER
scope. Whenever a filespec is typed by the user, that filespec,
together with all of either 1-s COPY or DELETE scopes (depending on
the context of use) are submitted to the Information Retrieval
System. When an entry-name is typed by the user, his ENTER scope is
prefixed to the entry-name typed, in order to construct the full
name-part of the file to be entered into the Catalogue.

Syntactý.cally, a scope looks like a name-part: a sequence of
name-components separated by periods (.).

Scopes are set and changed by the user to make it convenient to
reference riles in a relatively small region of filename-space,
presumably because he expects to do most of his work with those
files. If he wishes to access a file outside of his current scope,
he may prefix a filespec or entry-name with a dollar-sign ($) (to be
read as a barred "S", meaning: DON'T SCOPE), to override the
automatic scoping mechanism.

qhelp: BOOLEAN

qhelp is used when a tool calls the WM and doesn't want the WM to
directly oontaut the user at the FE for assistance. In this case
qhelp is s5t to F.

<X>-attcode: INTEGER

An index into the Interactive Tool Descriptor, where a large list of
required or known at~rLbutGs can be referenced without a large amount
of net transmission. "<X>" will be either "input" or "output" in the
procedure descriptions.

external-name: STRING

Either an ARPAnet pathni±me with piszword or a device pathname with
password. An externel.=-ame is needea for copying files from a source
outside of NSW (see IMPORT, TPANSPORT) or copying to a destination
outside of NSW (see EXPORT, TRANSPORT). An external-name argument is
always accompanied by a password argument, for gaining access to the
external directory, device, etc.

I

>>> "4APTER I: Works Manager Procedures PAGE 4-6

3. WORKS MANAGER PROCEDURES

3.1 Connection

LOGIN (project, node-name, password)
-- > userid, node-profile, user-profile, s3stem-message,

qhave-mail

LOGIN connects a user to the NSW, establishing him as an active
user with all the rights implied by the node at which he has
logged in. Mistakes 'i.e., non-recognition by the WM) in
arguments will be handled by HELP returns. The user will then be
permitted to retype the incorrect argument or abort and re-start
the login.

project: STRING, node-narie: STRING, password: STRING

This triple is collected from the user for the initial LOGIN
call; it identifies and gives access to a node on the NSW
project tree. The user is then considered to be logged-in "at"
(or even "as") that node. All rights to access files, use
tools, use WM procedures, and spend money are associated with
the login node.

node-profile: BIT-STRING, user-profile: BIT-STRING

These are encoded instructions to the FE (and perhaps also to
the WM), determining the style of 3ommunicating with the user;
they include specifications for iengths of heralds ax.d prompts
to be displayed, degree of commiand-word recognition andcompletion desired, lerngths of lists to be displayed, etc. The
information in node-profile is peculiar to the node, while the
information in user-profile applies to the person "owning" the
node in NSW records, regardless of which of his nodes he may

log in at (a person may own several nodes -- for example, a
project manager will own the top node in his project, but might
also set up some subsidiary nodes for his personal work).

system-message: STRING

This would be an important operational message from NSW (or
perhaps Project) management, to be displayed to all NSW users
at their next login ("system news").

qhave-mail: BOOLEAN

This, if true, will cause the FE to inform the user that there
exists new mail addressed either to him personally, or to his
present login node; to read his mail, the user should call a
Readmail tool.

- -

>>> CHAPTER 41: Works Manager Procedures PAGE 4-7

LOGOUT (userid)
-- > cost

LOGOUT disconnects a user from NSW. Normally, if any interactive
tools are still running for this user, he will be asked to
terminate those tooluses in the way appropriate for each tool, and
re-call LOGOUT. Alternatively, the user may ask the NSW to
terminate these tooluses for him (Command: Logout Fast); in this
case, output files which the tool has already DELIVERed or CLOSEd
will be entered into the NSW File system, and any other files will
be lost. If the TBH has gone down while the user was running, the
WM will try later to recover and DELIVER any files which the tool
had CLOSEd before the crash. Batch tools are, of course,
asynchronous with respect to user-NSW connection, and are not
affected by logout.

A WM-procedure RELOG was originally planned, which would enable the
user to mov, his login location from one node to another. This has
been replaced by a Front-End command MOVELOG which executes
successive calls on the WM-procedures LOGOUT and LOGIN.

REATTACHTONSW (project, nodename, password)
-- > userid, node-profile, us6:--profile, LIST [(tool-info)]

This procedure is intended to allow a user to resume his session
in the event that his FE-machine goes down, by re-contacting
NSWExec through another FE process. This is not a high priority
procedure and will not be available in early versions of the WM.
The LIST of "tool-info" in the returned items would contain, for
each tooluse the user had initiated, the information necessary for
the new F' to set up its tables as if it had been the one the user
had been using, presumably: tool-process-ID, tool-name,
tooluse-name, (perhaps) tool-grammar.

SCOPE (userid, access-type, scope, qadd)

SCOPE adds (if qadd is T) or deletes (if qadd is F) the scope of
access-type. Assistance is obtained by HELP return in the event
that there is difficulty (such as the user trying to set his scope
to include files to which he does not have authorized access).

3.2 Tool Running

RUNTOOL (userid, tool-name, tooluse-name)
-- > tool-process-ID, tool-grammar

RUNTOOL verifies that the user has access to the tool called
tool-name. It creates an instance of the tool process, and
establishes a communication path. It returns to the FE a process
identification for the FE to use in calling the tool, along with
the tool grammar. The tooluse-name argument is provided so that
several active instances of the same tool can be distinguished.

ti

>>> CHAPTER 4: Works Manager Procedures PAGE 4-8

tool-grammar: ?

The tool-grammar is an encodement of the Command Meta Language
(CHL) specification of the commands provided to the user for
interacting with the tool. When the FE process is on the WM
Host TENEX, what is passed is the local name of the BREL file
which embodies this grammar. When the FE process is on a
separate machine, the grammar itself will be passed, in someO
format yet to be specified (perhaps BIT-STRING?).

ENDTOOL (tooluse-name)
-- > cost, LIST [NSW-filenames Of files with semaphore lef' set

by tool], LIST [NSW-file.,names or files DELIVERED]

ENDTOOL is called from the Shop Foreman when a tool indicates it
has finished running; this procedure causes the WH to detach the
tool from the FE and terminate the tool process. The "return
items" shown above are actually sent to the FE (rather than
returned to the SF), along with a message instructing the FE to
remove this tooluse from its list Of active tools and to break its
communication link with the tool. All semaphores set during the
tool's running are unset unless the Interactive Tool Descriptor
indicates that this tool is one which understands use of the
semaphore. If so, a list of files with semaphore set is sent to
the FE so that the user can either confirm for each file that he
wants to leave the semaphore set, or indicate that he wants it
unset.

RERUNTOOL (userid, tooluse-name) p
-- > FE-tool-process-handle, tool-grammar

RERUNTOOL reestablishes the connection between a user and a tool
which was running on a TBH which had crashed and has subsequently
come back up. This procedure is not at all well defined yet and
will not be available in early versions of NSWExec.

I

j .,Ii

-m i l N ill I • nn • m l nm -- = • • " li p I l l I i l l..4

)>> CHAPTER 1: Works Manager Procedures PAGE 4-9

3.3 Files, No Movement

DELETE (id, ftilespeo, qhelp)
-- > NSW-filename

DELETE verifies that filespec designates a unique file to which
the user (identified explicitly by userid, or implicitly if DELETE
is called by a tool (first argument 0)) has DELETE access. This
access is blocked by a set semaphore. If any assistance is
required it is obtained via a HELP return (if qhelp is T or if
DELETE were called by a batch tool) or by a o~rect FE HELP call
(otherwise). Once a unique file has been foun~d, its STATUS
attribute is set to DEL. It will no longer be accessible to OPEN,
COPY, RENAME, EXPORT, etc., but the Rctal file catalogue entry
and file copies are not immediately deleted. The NSW-filename of
the deleted file is returned. This return could be a HELP return,
requiring confirmation before the actual delete occurs.
Alternately, since the file does not immediately disappear, an
UNDELZTE operation could be supported.

RENAME (id, Pilespec, entry-name, qhelp)
-- > old-NSW-filename, new-NSW-filename

RENAME verifies that filespec designates a unique file to which
the user has DELETE access. This access is blocked by a set
semaphore. If any assistance Is required it is obtained via HELP
return or direct FE call as above. RENAME forms a new
NSW-filename using entry-name and the tool-supplied attributes of
the old file. It verifies ENTER access and unambiguity. As usual
assistance is sought should there be any difficulty. The NSW
catalogue is then altered to reflect the new name-part and both
old and new NSW-filenames are returned.

SETSEMAPHORE (filespec, qhelp)
-- > NSW-filename

The WM verifies that the tool can use SETSEMAPHORE, that filespec
designates a unique file to which the user has DELETE access, and
that the semaphore is not already set. Assistance is obtained via
HELP return or direct FE call as above. If all is well, the
semaphore is set and the NSW-filename is returned.

UNSETSEMAPHORE (id, filespec, qhelp)
-- > NSW-filename

The WM verifies that filespec designates a unique file to which
the user has DELETE access. Assistance is obtained as usual. If
all is well, the semaphore is unset and the NSW-filename returned.

A

>>> CHAPTER 4t Works Manager Procedures PAGE 4-40

WARRANT (attcode, NSW-filename)
-- > new-NSY-filename

WARRANT adds the attributes referenced in the Interactive Tool
Descriptor by attcode to the file whose current name is
NSW-filename. Since tool-supplied attributes are part of
NSW-filenames, the new NSW-filename is returned.

DISPLAY (userid, access-type, filespec, (mask!%))
-- > (LIST (NSW-filenames] 1 number of files)

DISPLAY either lists selected portions of file catalogue entries
for some set of files or else reports the cardinality of the set.
The elements of the mask will refer to the parts of the file
catalogue entry described in Chapter 2, but details of the
encodement have not yet been specified.

CLOSE ('utput-attcode, local-filename, entry-name, qhelp)
-- • NSW-file-name

CLOSE performs all the functions of DELIVER below except that: (1)
no NSW file copy is made; and (2) an entry is made in the active
tool use entry of the calling tool. The intent of CLOSE is to
protect the user from TBH crashes. Should the TBH go down and then
come back up again, then, if either the user is not logged in or
chooses not to RERUNTOOL, the WM will make NSW file copies of the
CLOSEd files. Thus the user*s CLOSEd files will be in a
well-defined consistent state when he again chooses to OPEN then..
If a file has been CLOSEd with a given output-attcode and
entry-name, and, later during the running of the tool, another
file is CLOSEd or DELIVEREd with the identical output-attcode and
entry-name, the WM assumes that it is the user s intent to replace
the previously CLOSEd file. If a file has been CLOSEd, it is not

L necessary to DELIVER it. ENDTOOL will DELIVER all CLOSEd files
that have not previously been explicitly DELIVEREd.

3.4 Files, Movement

COPY (id, filespec, entry-name, qhelp)
-- > src-NSW-filename, dst-NSW-filename

COPY verifies appropriate accesses: COPY access for the source
file, ENTER access for the destination file, plus DELETE access
for the destination file if the copying would "overwrite" an
existing file. It creates a new NSW catalogue entry and a new
copy of the source file.

EXPORT (id, filespec, external-name, password, qhelp)
-- > src-NSW-filename

EXPOR2'A verifies appropriate access and sends a copy of the source
file to the location designated by external-name.

_ - -i

---.___. ...

S>>> CHAPTER 4: Works Manager Procedures PAGE 4-41

IMPORT (id, external-name, password, entry-name, qhelp)
-- > dst-NSW-filename

IMPORT is the inverse of EXPORT.

TRANSPORT (id, src-external-name, password, dst-external-name,
password)

TRANSPORT is an extended FTP for NSW users.

OPEN (input-attcode, filespec, qset, qhelp)
-- > NSW-filename, local-filename

OPEN is used by a tool to obtain a copy of an NSW file. The WM
verifies that there is a unique file designated by filespec to
which the user has COPY access and which has the attributes
implied by input-attoode. Assistance is obtained as usual.
Should the user also have DELETE access to the file, then WM will
set the semaphore on the file if either the Interactive Tool
Descriptor indicates that it should be set, or if qset is TRUE.
If the semaphore is already set (and the user has DELETE access
rights), then this tool's access to this file is blocked unless
the user, in response to a message to the FE, indicates that he is
willing to use a copy of the filed version, even though someone
else may be planning to replace it soon. In any event, if the
semaphore is set, the user is informed that it has been set, and
by whom. The WM makes a copy of the file into the workspace used
by the tool, performing whatever conversions are necessary and
possible. The NSW-filename of the copied file and the local
filename of the new copy are returned.

DELIVER (output-attcode, local-filename, entry-name, qhelp)
-- > NSW-filename

DELIVER is used by a tool to insert a file into the NSW file
system. ENTER access and unambiguity are verified with assistance
sought as usual. An entry is made in the NSW file catalogue and
an NSW-owned copy is made of the file designated by
local-filename. The attributes implied by output-attcode are
appended to the file. The original file is left in the tool's
workspace. The NSW-filename of the new entry is returned.

GETFILE (code)
-- > local-filename

GETFILE is used by certain tools, e.g., READMAIL, which require
access to the NSW file system on behalf of a user, but to files to
which the user himself does not have direct access. For example,
there will be a canonical way, referenced by code in READMAIL's
Interactive Tool Descriptor, of constructing an NSW filename of a
mailbox in which someone has put mail for the user of READMAIL.
Details are still unspecified.

>>> CHAPTER 1: Works Manager Procedures PAGE 4-12 j
code: INTEGER

An index into the Interactive Tool Descriptor, where an
algorithm for constructing an NSW-filename and other pertinent
information can be found.

PUTFILE (code, local-filename)

PUTFILE is the inverse of GETFILE. PUTFILF would be used by
SENDMAIL. Both would be used by NLS (conceivably) for storing a
user s NLS-profile.

READDEVICE (local-filename, device-code)

READDEVICE is used by tools which provide means for users to input
via local tape, card reader, paper tape reader without making NSW
files. The WM would figure out from the userid which FE the user
was at and therefore what the external-name of the appropriate
device is. After that, this procedure is just like TRANSFER.

device-code: STRING

crd = card reader
pun = card punch
ptr = paper tape reader
ptp = paper tape punch
mt7 = 7 track mag tape
mt9 = 9 track mag tape
dta = DEC tape

WRITEDEVICE (local-filename, device-code)

WRITEDEVICE is the inverse of READDEVICE.

Wc

'I

K 1I

>>> Chapter 2: Catalogue Entries and File Names Page 2-4

CHAPTER 2

Catalogue Entries and File NRMe3

1. Introduction

Crucial to the development of the NSW was the design of'
a nomenclature for NSW files. There were a number of conflicting
goals which impacted on this effort. Most important, of course,
was the necessity to have names which were unambiguous throughout
the NSW system. This fu~ll file name should also contain
information relating to the ownership, history and use of the
file. On the other hand, the users of NSW within a project are
not concerned with the possibility that one of their file names
might conflict with one at a remote site. Furthermore, they
will not be willing to specify full file names to avoid such
conflicts, and this will translate into dissatisfaction with,
and reduced usage of, NSW. A third criterion was imposed by
the environment of NSW: since each NSW file in fact resides
within some (anid possibly more than one) host, its NSW file
name must in some way be compatable with the naming conventions
of the host's operating system. Finally, it was necessary to
distinguish between various copies of the file: for any given
file there may be copies at a number of places within the
system, but the existence and location of these copies should
be transparant to the user. i

These issues are resolved by raising the level of the
design from the file name to the catalogue entry. The catalogue
entry contains full information about a file and all of its
physical copies. It contains a fully unambiguous spec-
ification of the file: what we would think of as the file name,
a list of attributes which are available to the user for exam-
ination and further specification of the file, and a list
which is unavailable to the user which defines each of the
physical copies of the file. In retr'ieving a file the user need
give no more in~formation than is necessary; in most cases this
information will consist of components of the name, with missing
components indicated by ellipses. When necessary, or if desired
for other readers of a program, a command, or a teletype script,
attributes can be appended to the specification.

The following sections describe the components of the
NSW catalogue entry, in terms of both function and formal syntax.

>>> Chapter 2: Catalogue Entries and File Names Page 2-2

2. NSW Catalogue Entry

An NSW catalogue entry has the following form:

name-part
use-type
creator
*.,st-reader

semaphore
time-of-creation
LIST [local-copy-entry]

2.1 Name-part

A name-part consists of 1 to 10 ordered name-components.
Each name-component is I to 12 characters from the alphabet:

AB ... Z
ab .. z0,1 .. 9
- (hyphen)
_ (underline)

2.2 Use-type

(.1 The use-type is a small integer which, corresponds to a
logical property of the file. The currently defined types (and
the corresponding property) are:

PI.

0 null (no property)
I COBOL-SRC
2 COBOL-LST
3 COBOL-LDM
4 TEXT
5 BINARY

2.3 Creator

The creator of a file is identified by the pair
(project, node-name). Each member of the pair has the same syn-
tax as a name-component (see 2.1 above).

S>>> Chapter 2i Catalogue Entries and File Names Page 2-3

2.4 Last-reader

Same as 2.3.

2.5 Semaphore

The semaphore is set by a user (or tool) who is writing
into the file, to warn other potential users that the file may
be undergoing change. The semaphore is either 0 - meaning
not set - or it is the pair (project, nodemame) indicating
the setter of the semaphore.

2.6 Time-of-creation

Time-of-creation is a .1M-digit decimal integer con-
sisting of (left to right):

year (4)
month (2)
day (2)
hour (2)
minute (2)
second (2)

The time reference is GMT.

2.7 Local-copy-entry

There is an item in the list or local-copy-entries, for

each file system copy of the NSW file. That is, if one copy or
a file is stored on BBNB and another on ISIC then there are two
local-copy-entries. Copies made of a file for use by a tool
are not file system copies.

Each local-copy-entry is a pair (structure, path-name)
where structure is a (host dependent) list defining the struc-
turco- of the copy of the file. As we gain experience with the
possible range of file structures, we expect to be able to en-
code structure more succintly. For the present, the following
structures are defined:

>>> Chapter 2: Catalogue Entries and File Names Page 2-4

B4700:
use-type LRS' BLK NRECS FMT--- i ---- - -
COBOL-SRC 80 5 var A
COBOL-LST 4140 5 var F
COBOL-LDM ,100 1 var B
TEXT var var var A
BINARY var var var B

TUNEX:
use-type BYTE-SIZE NBYTES FMT

TEXT 7 var F
BINARY 8 var B

where use-type (defined in 2.2 above) is included in the table
for information only (it is not recorded as part of the struc-
ture).

* LRS is logical record size in characters
BLK is the number of records per block
NRECS is the number of records in the file
FMT is the format control character
var indicates that the value of a

parameter is a variable of the struc-
ture (i.e., dependent on the particu-
lar file which the structure describes).

BYTE-SIZE is the size in bits
NBYTES is the number of bytes in the file

1.

»> Chapter 2: Catalogue Entries and File Names Page 2-5

These structures are adequate for moving files between
TENEX and B4700 so that COBOL source, text data, and listing
files can be edited on TENEX, COBOL source, listing, data,
and load module files can be stored on TENEX, and COBOL source
files can be compiled on B4700. Installation of additional

tools will require
expansion

of the list of file structures.

Path-name is the list (host, directory, local-file-name,
password). The syntax of the components of this list is host-dependent.

Two file catalogue
entries

are distinct
if the name-

parts and use-types are not identical.

A user of NSW is allowed to see any part of a file

catalogue entry except the list of local-copy-entries.

J1

>>> Chapter 2: Catalogue Entries and File Names Page 2-6

3. NSW filename

3.1 Syntax

For the initial system, an NSW filename has the follow-
ing syntax: ((n], [n,m], (,), {,) have their usual meta-syntactic
functions.)

<NSW-filename> ::z <name-part> / <attributes>

<name-part> ::. <name-component>
(. <name-component>) [0,9]

<attributes> ::a <use-type>; <creator>; <last-reader>;
<semaphore>; <time-of-creation>

<use-type> ::- UT : (null I COBOL-SRC 1 COBOL-LST I

COBOL-LDM I TEXT I BINARY)

<creator> ::- CR : <project> + <node-name>

<last-reader> ::= LR : (null I <project> + <node-name>)

<semaphore> ::= SM : (null I <project> + <rode-name>)

<time-of-creation> ::= TC : <digit> ([4 (: <digit> [2]) [5)

<name-component>, <project>, <node-name> ::- <identifier>

<identifier> ::: <character> [1,42]

<character> ::z AIBI ... IZialbi ... IzIoW... 191-1_

3.2 Ambiguity
Two NSW filenames are distinct if their name-parts and

use-types are not identical.

3.3 Retrieval

Any portion of an NSW filename may be specified by a
user for retrieving a file. Missing name components may be
indicated by ellipses - e.g., WALDO...HENRY . Attributes
may be given in any order.

It

U' I

- --------- -' ----- --- ...

>>> Chapter 2: Catalogue Entries and File Names Page 2-7

Full NSW filename syntax

<Filename> ::= 5NSW <Nmptail>
<Identifier> <Nmptail>

• I <Nmptail>
<Nmptail> ::= ... <Identifier> <Nmpnd>

I ... <Nmpnd>
I <Identifier> <Nmpnd>
I <Nmprid>

<Nmpnd> ::= / <Attpt>
I <Ender>
I <Nmptail>

<Attpt> ::= <Ender>
I <Attribute> <Attail>

<Attail> : = <Enider>SI ; <Identifier> <Attail>
<Attribute> ::= (COMMENT: Any of the <Attributes> defined in 3.1

above, plus others to be defined subsequently.]
<Erider> :'- [COMMENT: Any separator other than ".", "O",

"it/o, "1"'; or failure to recognize an <Identifier>]

i~i I

>> Chapter 3: Black Boxes Called by WM Pase 3-1

CHAPTER 3

Black Boxes Called by the Works Manager

I. Introduction

4.4 What Black Boxes Are

The Works Manager re'uires that certain functions in-
volving other hosts be performed. From the point of view of the
Works Manager, the manner of performance of these functions is
unimportant -- only their I/O map matters. That is, the Works
Manager requires black boxes, each of which, given a certain in-
put set, produces a desired output; the internal functioning
of each black box does not matter. It is the purpose of this
chapter to describe the desired I/O map for each of what currently
seems an appropriate set of black boxes.

4.2 Meta.-description

All the black boxes are described here as if there were
an asynchronous process which could be called to perform these
functions. Thus, every argument is explicitly given, even
though it is possible to have an implementation in which some
arguments would be implicit because of the place of call.
Nevertheless, we have given all arguments in order not to influ-
ence those who will be charged with implementing these black
boxes.

RI

>>) Chapter 3: Black Boxes Called by WM Page 3-2

2.1 Introduction

While different black boxes require different arguments,

some of which are simple integers or strings and some of which
are more complex data structures, it is the case that even for
explicit specification of all possibly necessary arguments for
each black box, only a small number of argument types are needed.
The rest of this section contains the glossary of these
argument types; taken together with the functional descriptions
of the black boxes given in section 3 it provides as complete
a specification of the b:2ack boxes as is now possible. While
section 3 shows the argument list for each black box, the functional
descriptions are essentially independent of the detailed
specifications of the arguments given here.

2.2 Detailed Descriptions

For each argument we show (4) its name as used in section
3, (2) its data type, and (3) its function.

account designator - LIST[user-name account, accounting-

password'

Account designator provides the infor-
mation necessary to authorize the use of
a black box. User-name is a STRING and
esignates an authorized black box user.
(In our case it will always be NSW, but
we are leaving open the possibility
of other users.) Account is an INTEGER;
accounting-password is a STRING. They
provide further and finer protection
of the black boxes.

host - INTEGER Host designates a node on the ARPAnet.
It appears in section 3 variously as host,
src-host, dst-host, TBH (tool-bearing host),
or FE (front-end).

workspace - STRING A workspace is what is commonly called a
directory, but since the latter term is
also used to refer to the catalogue of
items in the workspace, we have chosen to
use the terms workspace and catalogue for
these two different objects.

SV_

i

>>> Chapter 3: Black Boxes Called by WM Page 3-3

filename - STRING Pileriame names a file in a workspace.
(Strictly, it refers to an entry in a
catalogue which references a file in a
workspace.) It appears variously as file-
name, sro-filename, dst-filename.

file-password - STRING We assume that, in general, files are pro-
tected by passwords. This protection may
be implemented at any of the three levels
of file specification - i.e., host, work-
space, filename. Thus, we separate file-
password from file specification when we
designate a file.

ceo - LISTEBOOLEAN, INTEGER, ?I

Ceo is an abbreviation of condition/error
code. It is always returned by a black
box. It is divided into two parts. The
first part is standard for all black
boxes. It consists of a notification of
success or failure, and the charges (in
cents) incurred by execution of the black
box (as distinct from charges which might
be incurred because of tool execution be-
gun by the black box).

The second part is black box dependent.
It provides information as to the causes
of any failure. Examples of the kind of
possible failures are:

Account designator invalid

source/destination host invalid/dead

source/destination host net connection dead

source/destination workspace not found/invalid

source/destination password invalid

source filename invalid

net transmission error

source filename not found

source file too big

structure cannot be used on destination host

net/host failure

>>> Chapter 3: Black Boxes Called by WM Page 3-4

Note that these are examples of the kinds
of' failures which would cause error messages.
We expect that the implemernters will find It
both necessary and possible to provide a
larger vocabulary of error messages each of'
which will give at least as much information
as to the cause of the error as do these
examples. Precise definition of error
messages will. presumably be part of the
effort of implementing the black boxes.

U

I

L_. __

>>> Chapter 3: Black Boxes Called by WM Page 3-5

3. Black Boxes -- Functional Descriptions

3.4 Introduction

The functional descriptions of the black boxes required
by the Works Manager are grouped by the type of activity which
they mediate. These are:

File manipulation within a TBH

File manipulation between TBHs

Determining the status of a host or of the net

Manipulation of interactive tools.

3.2 File Manipulation Within a TBH

4) LOCALCOPY(account-designator, host, src-workspace,
src-filename, src-file-password, dst-workspace,
{dst-filename), dst-file-password)

-> ceo
{dst-filename}

LOCALCOPY copies a file within a host's file system.
"There is no transmission across the net. The source file is not
disturbed. LOCALCOPY returns a generated dst-filename if one is not
supplied as an argument of call.

* 2) DELETE(account-designator, host, workspace,
((filename) (I, N] 1 ALL), file-password)

->cec
({filename) (0, MJ I ALL)

DELETE deletes a file or set of files from a single
workspace in a host's file system. It may be used to delete a
single named file, a list of named files, or, if ALL is the
argument, every file from a given workspace. It returns the
names of all files deleted (or ALL if the entire contents of the
workspace were deleted).

»>> Chapter 3: Black Boxes Called by WM Page 3-6

3) LOCALMOVE(account-designator, host, src-workspace, src-filename,
srC-file-password, dst-workspace, (dst-filc.name),
dst-file-password)

->cec{dst-filename }

LOCALMOVE moves a file within a host's file system with-
out copying. It is logically equivalent to a LOCALCOPY followed
by a DELETE, but it is intended to be implemented by changing
the host's file system catalogue (i.e., renaming). If dst-file-
name is not supplied, or if it is ambiguous in dst-workspace,
then a generated fileriame is returned. Any such ambiguity is
reported in cec.

4) MOVEWORKSPACE(account-designator, host, src-workspace,
src-file-password, dst-workspace, dst-file-password)

-> cec
{ <src-filename, dst-filename> } (0, N]

MOVEWORKSPACE is equivalent to a LOCALMOVE (with dst-
filename the same as src-filename) for every file in src-work-
space. If there is any ambiguity, then a new filename is gener-
ated for each src-filename which is ambiguous in dst-workspace.
A list of pairs <src-filename, (generated) dst-filename> is
returned, and the ambiguity is reported in cec.

5) CATALOGUE(account-designator, host, workspace, file-password)

-> cec
(filerame) [0, N3

CATALOGUE obtains a listing of all the files in workspace.

3.3 File Manipulation Between TBHs

.1) NETCOPY(account-designator, src-host, src-workspace, src-
filename, src-file-password, src-structure, dst-host,
dst-workspace, (dst-filename), dst-file-password,
dst-structure)

->cece
{dst-fileniame}

NETCOPY causes the file identified by src-host, ... to be
transmitted across the net and stored as dst-host, ... The source
file is not disturbed. The success or failure of transmission is
reported in cee. If a dst-filename is not supplied, or if it is
ambiguous in dst-workspace, then a generated dst-filename is re-
turned. Ambiguity is reported in cec.

)>> Chapter 3: Black Boxes Called by WM Page 3-7

Src-structure and dst-structure are presently undefined.
They are intended to consist of a logical and a physical component
The logical structure of a file will be a constaut of the file,
recorded in the NSW catalogue. Each copy of a file will have an
associated physical structure which may vary for iiffsrent copies -

e.g., a file may be a B4700 COBOL load module (logical structure)
and may exist in two copies, one on a 'ENEX in one for:,aat andr=• another on a B4700 in a different format.

3.41 Status

4) HOSTPROBE(account-designator, host)

-> cec
state-vector

HOSTPROBE queries the state or a host. The exact format
Sof state-vector requires further determination. Some expected
components are:

ALIVE/DEPD HOST

ALIVE/DEAD NETWORK CONNECTION

number of active users

file space used/available

length of batch queue

2) scheduled downtime

, ~2) NETPROBE (account-designator)

-> cec
state-vector

NETPROBE queries the state of the net. The exact format
of state-vector requires further determination.

A

1]

I
' '.....' i

>> Chapter 3: Black Boxes Called by WM Page 3-8

3.5 Interactive Tools

1) BEGINTOOL(account-designator, FE, userid, TBH, password,
> account, workspace, file-password, tool, startup-data)

i: ->cec

tooluse-id

BEGINTOOL causes the user identified by userid at the FE
;o be connected to the TBH, logged in under password and account,
attached to the workspace, and finally causes tool to be started
with startup-data provided. Note that this is a logical descrip-
tion of BEGINTOOL; the WM does not require (or even expect) that
the sequence of actions which a user currently performs will be 4

F literally mimicked.

a g Userid is the INTEGER associated with a user by the WM
Sat login. Account is probably a STRING but it could conceivably

be more structured. Startup-data is a 3ITSTRING. Tooluse-id is
an INTEGER and is used as an argument in other black boxes.

2) ENDTOOL(account-desigriator, tooluse-id)

-> cec
cost

1- ENDTOOL stops the use of a tool and severs the link I
which was established by a previous BEGINTOOL. The cost (in
cents) of the tooluse is returned.

3) SUSPENDTOOL(account-designator, tooluse-id)

-> ceo

SUSPENDTOOL ends the use of a tool and severs the link
which was establshed by a previous BEGINTOOL. However, sufficient
information is retained, indexed by tooluse-id, so that the link
can be reestablished by RESUMETOOL.

4) RESUMETOOL(account-designator, tocluse-id)

-> cec

RESUMETOOL reestablishes the link broken by a previous
SUSPENDTOOL.

5) TOOLPROBE(accounting-designator, tooluse-id)

-> cen
state-vector

cost

TOOLPROBE queries the state of a running tool. The
details of state-vector require formulation. The currently
accumulated cost in cents is also returned.

>>> Chapter 14: Communication with PDPV1/B47 00 Page 4.-1

CHAPTER 4

Communication with the PDP41 B4700

.1. OVERVIEW OF NSW BATCH FACILITIES

3.1 NSW Batch Processes
Batch processes within NSW are those which run (for

Tebatch processes easily divide into two classes: batch

tosand batch jobs. The batch tool bears strong resem-
blance to the interactive tool: it Is a reliable, production
other hand, the batch job offers the NSW user the ability to

run a fairly arbitrary job on the batch machine.

4.2 Batch Tools

Batch tools are essentially the same as interactive
tools with the important difference that the user is not attached
to the tool while it is running, but is free to do other work.

When a user requests that a batch tool be run, all of
the information required by the tool, which might normally be
determined at various points during execution if the tool
were running interactively, must be specified before execution
can begin. NSW provides an Interactive Batch Specifier (IBS)
to mediate a conversation between the user and the Works Manager
for the purpose of fixing the information n~eeded by the tool.
There is a Batch Tool Descriptor for each batch tool which
specifies the information needed by the tool, and the conversation
mediated by IBS will determine

. Files to be processed

. Disposition of results

The user's right- of access to the desired input and output tools
is verified, and the output files are marked (by setting the
semaphore -- see Chapter 2, section 2.5) as "being generated".
The IBS then refers to a skeleton text in the Batch T~ool
Descriptor to generate the necessary JCL for running the tool,
and this JCL is then submitted for execution (see below). When
submission has been effected, IBS returns to the user, who can
either submit another batch process or terminate IBS and return
to WM command level.

>>> Chapter 14: Communication with PDPII/B4700 Page 4-2

,1.3 Batch Jobs

Most tools are sufficiently general to run under control
of JCL substantially different from the skeleton contained in
the Batch Tool Descriptor. We use the term "batch job" to refer
to the running of such a tool, or of a collection of tools, under
control of a JCL file provided by the user. In this situation the
IBS mediates a conversation between the user and the WH in which
the rights of access to the files and tools specified in the user's
JCL are verified. As before, output files are marked as "being
generated". Note that the user-supplied JCL file may contain NSW
filenames.

So far as possible, the JCL is checked for validity by
verifying the following:

• Correct JCL -- verified for syntactic correctness

. Permitted accesses -- to both files and tools

Sufficient funds -- so that the job (with time
limit if necessary) will not overrun
the user's account.

While the JCL file may be marked, once verified, to indicate
the validity of the JCL syntax, both accesses and funds are dynamic
and mur. je rechecked each time the JCL file is submitted.

The validated JCL is then submitted for e.ecution.
As before, the IBS returns to the user for either a new batch
process or termination.

4.4 Job Execution

Once tool or job specification is complete, execu-
tion is initiated. Execution of batch processes is supervised
by a batch operator component of the WM. When the user in-
quires about status, he is really conversing with the WM
operator (WMO).

The WMO supervises transfer of files to the batch
site, transfers a file of JCL to that site, and then requests
that the JCL be executed. Ideally, the WMO could receive the
log of the process execution (as produced by a B4700 SPO or
TENEX typescript, etc.) so that the user could "connect" to the
SPO to "watch" the process run, or type it period!.cally.

>>> Chapter 4: Communication with PDP1I/B4700 Page 4-3

Once the batch machine completes the process, it sig-
nals the WHO that the results are available. The WMO is then
free to dispose of the results according to the process
specification. If an error was detected during the batch
process and the result disposition is unclear, the results
may be held in suspension pending a subsequent conversation
with the user. The final step in the batch process is that the
WMO signals the user that the process is complete - with an
online or offline message depending on wiether or not the user
is logged in when the process completes.

What kind of visibility does the process have when it
is under control of the WMO? That is if the user were to type
< inquire > , how much could he be told? We envision several
status messages:

Awaiting transmission

In transmission

Awaiting execution

In execution

Awaiting receipt

Complete

Awaiting disposition

"In execution" requires additional detail. Hopefully it would
also report running time as of the probe. Optionally, a
< watch > facility might be desirable: the process log would
be typed on the user s terminal as received from the batch
machine.

II

; f;

• H
S.. .2

>>> Chapter 4: Communication with PDP11/B4700 Page 4-4

2. TENEX IP DESIGN

2., Introduction

IP was originally designed by ADR and SAI as the Interface
Protocol between the Bh700 and the PDP11 at Gunter. As such, it
describes a variety of messages to be exchanged between so-called
11IP (running under ELF) and 4700IP running as a never-ending program
under the B4700 operating system, MCPV.

The PDP11 at Gunter has been configured with 128K
of core, with the intent of providing a comprehensive
Arpanet Interface with the B4700, in the form of PCP,
FP, etc. However, utilization of more than 28K on the 11
requires VM (Virtual Memory) ELF, which will not be
available in the near term. So the first implementation of
the B4700/Arpanet connection will have to be based on use
of 28K in the 11. As (Real Memory) ELF requires 2hK for
ELF, NCP and its buffers, TELNET, and one terminal, the B4700
interface code is confined to 4K. Since the device driver for
the 50KB line to the B4 700 requires 2K, almost all processing
of IP messages is being moved to TENEX until VM ELF becomes
available.

In this limited configuration, the 11 is essentially
a transparent interface between the Arpanet and the 50KB
link from the 11 to the B4700. Communication is thus
between the B4700 and TENEX. It should be emphasized that
this design is for the special purpose of initial debugging
of the B4700/Arpanet (and therefore NSW) interface. It does
serve the needs of a bat,, TBH from NSW's standpoint, and
therefore will serve aq interesting model.

2.2 User/Server relationship

B4700 is strictly a server. It listens for "request"
messages, or under unusual circumstances, sends out an
unsolicited message. When sent a message, it produces
exactly one "response" message. There is one exception to this
one-request/one-response rule: no explicit acknowledge
message is sent over the net for each unit of file transfer.

TENEX is stri,L.. y a . ., communicating only with
B4700 IP. It sends request messages, and expects to receive
for each exactly one response, with unsolicited messages
which may be received any time a normal response message is
expected.

1
I I

>>> Chapter 4: Communication withPDPII/B4700 Page 4-5

2.3 Unsolicited Messages (interrupts)

In certain situations, the B4700 wishes to signal
TENEX of change in status. Currently, two such events are
defined-:

Job done
B4700 operator requests service termination

Of course, status could be polled; rather, at any time
the B4700 can send an unsolicited message to TENEX. Such
messages arrive with a zero "handle" (a field in the header
portion of a message) and are immediately recognizable by
TENEX. These messages become interrupts to WMO processes
supervising the B4700 operations.

2.74 Message Format

All IP messages (both request- and response-type)
have the same format: an 8-byte header followed by a variable
length portion. The length of the variable portion is always
in the last two bytes of the header in units of 3-bit
bytes, and is between 0 and 200, inclusive (the limit of 200
may be relaxed later). Thus, an IP message works as follows:

-...----- -- -------- +---- ... > + !,I I I I

.I header variable portion 1I I ' I
+--------- + -----------------a a»» +

The format of the header is as follows:

-.. a----- -----------.---------------------- aaaaaaaaaaa.. .. aa---.----------- --a---

SI 1I I
Isubsys I fn 1 handle I modifier 1 length

aa + aaa-+aaaaaaaaaa-------------aaaaaa4 - a a ---- +aaaaaaa+ aa -- a-a-

where:
subsys is a character (all characters (in IP) are 8-bit

ASCII) as follows:

A - File Transfer System (FTS)
B - Catalog System (CAT)
C - Work Order Executive (WOE)
Z - System messages;

H I ?~

>>> Chapter 4: Communication with PDPI1/B4700 Page 4-6

fn and modifier are characters (3 in all) used
to request particular functions of --

the subsystem;

handle associates messages with processes and
is a two-byte integer;

length was described above and is a two-byte integer.

(In IP a "byte" is an arbitrary bit pattern, while
"character" will describe a limited ASCII character set
which is quite digestible by "unit record" machines like
the B4700: it specifically excludes the format effectors
CH, LF, TAB, FF, EOL, etc. Rather, (optional) format of ASCII
records is specIfied as ar ASA format code in column I of each
record (see the discussions on file transfers for more detail)).

2.5 Handles

byth The 50KB line between the B4 700 and the PDP11 is viewed

by them as a single pair of physical channels. 4700IP consists
of several asynchronous processes, however. In the original
design, the PDP41 assigned a unique (mod 2"16) handle to
each request it sent to the 4700 so that the 4700 could
process several requests concurrently. The B4700 was expected
to return the request handle in the handle field of the
corresponding response, so that the PDPI1 could establish the
correspondence.

With the decision to temporarily move the user end
of IP to TENEX, TENEX will now assign handles to IP messages
as they are sent out over the Net. As before, the 4700 will
echo the handle in its response (but remember that unsolicited
messages are sent with zero handles). Each message is assigned
a handle equal to one greater than the previous message. The
handle of the IP message following an NSW cold start is 1, as
is the handle of the message following one with a handle of
2**.6-1.

"->> Chapter 4: Communication with PDPII/B4700 Page 4-7

3. FILE TRANSFER IN IP,.

Part .1 - Introduction and Catalog Subsystem

3.4 Introduction

Every file transfer in IP is done in two stages:

4) Negotiation with the 4700 catalog
2) Transfer of file contents

In the 4700 file system, every file on disk has a unique name In
a single catalog. Along with the name, logical record size (irs),
records per block (rpb), number of records in file (nrecs), and
allocation information (areas on the 4700) are recorded. In order
to satisfy NSW file transfer requirements, the W1 must
be cognizant of irs, rpb, and nrecs for every file which
it imports to or exports from the 4700. Negotiation
with the catalog, therefore, consists of reading or setting
those parameters in preparation for transfer of file contents.
Once the catalog information is established, the file
contents may be transferred by a transfer of each logical
record.

These tasks are split between the CAT and FTS subsystems
as follows:

CAT never reads file conter.ts but is solely concerned
with reading and writing the catalog.

FTS sends and receives file contents, never changing
the catalog, except for changing the record
count as required by file transfer to the 4700.

3.4.4 CAT Messages

Currently, four basic functions are supported by CAT:

0. Read Name - tests the catalog to see if
a particular file is cataloged, and if
so, returns its catalog entry.

1. Enter Name - (where the name need not beI, completely specified) enters a new
name in the catalog with irs and rpb
supplied by NSW, allocated on the basis
of a supplied record count (nrecs) but
is initially empty.

j

>>> Chapter 4: Communication with PDPII/B4700 Page 4-8

2. Purge File- deletes (and expunges) a name
and its associated file contents.

3. Rename - changes only the name of a catalog
entry to a new name. The new name must
not be in use.

3.2 Message Description Technique

The format of IP messages was described earlier. For
the purposes of detailing the format of described messages,
we will use the notation

CAT(fn,modifiervariable part)
FTS(fn, lifierfvariable part)
WOE(fn,o..-ifiervariable part)
SYS(fnmodifiervariable part)

where
fri is a character,
modifier is two characters,
variable part is a BNF metavariable, described later.

Unsolicited messages are indicated by an asterisk appended
to the IP subsystem name; e.g. SYS*(3,00,) is an
unsolicited message requesting service termination.
All other messages have handles assigned as described earlier.

3.2.4 CAT Messages

Read Name = CAT(0,00,<file name>)
requests catalog information on the specified file

name. Normal response is the complete <file spec> for
the requested file. Returns:

File Present = CAT(0,O0,<file spec>) if found
Nonexistent = CAT(0,82,<file name>) if not
4700 I/O err = CAT(0,88,<file name>) if error

Enter Name = CAT(1,00,<partial file spec>)
establishes a new name in the 4700 catalog. The file

spec name portion may optionally contain "wild card" characters
('?') in which case the 4700 is free to substitue any character
in order to create a unique name. The first character in

a name may not be a wild card. Normal response is actual
name used. Returns one of the following:

Succoessful Catalog = CAT(1,00,<file name>)
Catalog Full = CAT(1,8h,<partial file spec>)
Name not unique = CAT(1,86,<partial file spec>) if

unique name could not be created.
4700 I/O Error CAT(1,88,<partial file spec>)

Li___

>>> Chapter 4: Communication with PDPII/B4700 Page 4-9

Purge File : CAT(2,00,<rile name>)
deletes and expunges catalog entry and rile contents

or an existing 4700 file. Normal response is positive
acknowledgment. Returns one of the following:

Successful Purge a CAT(2,00,<file name>)
File not found a CAT(2,82,<file name>)
4700 I/O Error a CAT(2,88,<rile name>)

Rename File : CAT(3,00,<file name pair>)
renames the (existing) file specified in the first

name to be the (non-existent) second name. Normal response is
positive acknowledgment. Returns one of the following:

Successful Rename = CAT(3,00,<file name pair>)
Old Name Not Found z CAT(3,82,<rile name pair>)
NeW Name Not Unique= CAT(3,86,<file name pair>)
4700 I/O Error = CAT(3,88,<file name pair>)

3.3 BNF

The following BNF defines the metavariables used
by the catalog system definition.

<digit> ::=0111...1819
<number> ::= <digit>I<digit><number>
<letter> ::=AIBk... IYlZjajb... Iyjz
<alphanumeric> ::: <letter>I<digit>L<xalphanum> :=<alphanumerioc>I?
<file name> ::= <user name>I<print label>
<user name>(1) ::= <letter> <user name><alphanumeric>
<partial

file name>(1) ::= <letter>k<RJE#>I<partial file name><xalphanum>
<print label>(1)::= <RJE#>I<print label><alphanumeric>
<file name pair>::= <rile name>;<file name>
<file spec> ::- <file name>;<file map>
<partial

file spec> ::= <partial file name>;<file map>
<file map> ::= <Irsc>,<rpb>,<nrecs>
<lrsc>(2) ::= <number>
<rpb>(3) ::= <number>
<nrecs>(4.) :=<number>
<RJE#>(5) :=6

LI I

>>> Chapter 4: Communication with PDPII/B4700 Page 4-40

Notes

* (i)) Length limited to 6 characters.

(2) Logical record size in characters must be doubled by 4700IP
to produce the Irs in digits(!) as required by MCPV. Even, and
loss than 200 (for now).

(3) Records per block must be such that lrsc3rpb is less than
4000, because of core limitations within the 4700.

(4) Number of records has no real limit. Space is allocated so that
nrecs will fill 10 areas on the 4700 disk. Thus, the file can double
in size before access (with more than 20 areas) becomes inefficient.
Noa (maximum number of areas) for new files will be set to 20 by
4700IP to keep NSW users reasonable.

(5) This needs confirmation by GAFB.

Li

ii
I

I.-

,, i i -- -

-r »>>> Chapter 4: Communication with PDPII/B4700 Page 4-44

V
F Part 2 - Transfer of File Contents

3.14 Introduction

IP deals only with sequential byte files. Every
file on the 4700 is of this general class, so that

4) Any file on the 47O0 can be copied by IP with
enough information so that it could be
restored - as in an archival system.

2) Sequential byte files (of reasonable byte size)
can be shared among 4700 and TENEX tools.

The sequential byte files are broken into record
groups of explicit length of three different types:

A) ASCII - in which the records are seqv noes of
IP characters (no format effectors);

F) r'ormatted ASCII - in which the records are
sequences of IP characters, the first
of which is always an ASA format specifier;

B) Binary - in which the records are sequences of
8-bit bytes, with all 256 bit patterns
permitted.

1~i

>>) Chapter 4: Communication with PDPII/B4700 Page i4.12

3.5 File Transfer Sequence -1

Transfer of logical records within IP is an exception
to the one request/one-response rule, as receipt of data j
does not cause the receiver to return an IP message, but
to simply ask his NCP for the next message(s). Actual
sequence is as follows, assuming required CAT operations
have been perfored:

TENEX -> 4700

TENEX requests
"start send"

'4700 responds "ok to send"
or "error"

TENE;. sends records 4700 stores records

TENEX sends "eof"
4700 closes file and acknowledges

transfer complete
TENEX receives
confirmation, completing
the transfer.

Note that once the transfer has begun, TENEX will ii
not expect to hear from the l700 until after eof. 1/0 errors
or service interrupts will change this, however. I/O errors
at TENEX are handled by sending an "I/O error" message to
the 4700 instead of the next record or' the eof. On the other
hand, TENEX has to listen for possible I/O while it is
sending records, which can be done by testing the channel
for message waiting, for example.

>>> Chapter 4: Comwunication with PDP,1/B4700 Page -413

4700 -> TENEX

TENEX requests
"start get"

4700 responds "starting get"
TENEX receives
acknowledgement

TENIEX receives records 4700 sends records

4700 sends "eof"
and terminates the transfer

TENEX receives the
"f"eof" and terminates the
transfer.

Errors on 4i700 will cause TENEX to receive an
error message instead of a record, but the h70G must
listen for possible error messages from TENEX while it
is sending records.

3.6 FTS Messages

All file transfers are done with FTS IP messages,
as follows:

Start Send = FTS(O,0I,<xfr spec>)
initiates an IP send operation. <xfr spec> contains

only 4700 file name and format mode. Normal response is
the assignment of a "transfer number" within 4700IP (up to
five file-content transfers may be in progress simulataneously.
The referenced file name must exist, and have an assigned
Irso, rpb, and an area allocation appropriate to the
number of records in the new file. Any old file contents
associated with the name are deleted. Response is one of
the following:

Ok to Send = FTS(<xfr no>,00,<xfr spec>)
No Room = FTS(0,81,<xfr spec>) if the maximum

number of transfers are in progress
File not Found = FTS(0,82,<xfr spec>)

If the transmission mode is F(Formatted ASCII) Irsc
must be between I and 133 and rpb must be 5.

A.

>>> Chapter 4: Communication with PDPII/B4700 Page 4.1.4

Send Record = FTS(<xfr no>,O0,<record>)
sends the next record of the Specified file transfer.

Normally expects no response. Instead, checks the incoming
net connection for a possible error message, and finding none,
proceeds to send the next record of the file or a eof message.
May get responses of

Transmission Error= FTS(<xfr no>,83,)
4700 Write Error FTS(<xfr no>,8b,)

The 4700 is expected to store the incoming <record>s as follows,
under control of the format established during "start send"
as follows:

A(ASCII): <record> contains not more than lrsc
IP characters. The buffer set upwithin the 4700 for the next record of

the file is initialized to Irsc EBCDI3
blanks. The characters of <record> areconverted to EBCDIC and written

into the leading positions of the buffer.

F(Formatte'.* <record> contains not more than lrsc
ASCII): IP characters. The buffer set up

within the h'700 for the next record
of the file !s initialized to be a
MCPV PBD record with 132 EBCDIC blanks
and formatting based on the incoming
<record>'s column 1. The remaining
characters of the record are converted
to EBCDIC and filled into the print-line I
positions of the buffer. The algorithm
for doing this needs specification by
SAI. (See Burrough's Medium System
TN on "Device Alternates" for the
format of PBD (Printer Back-up Disk files).

B(Binary): Each <record> contains exactly
Irsc bytes. The bytes are copied into
the buffer for the lnext record
without translation. A

Normal EOF : FTS(<xfr 11o0,03,)
indicates that TENEX has reached EOF on the

specified <xfr no>. flormal response is "transfer complete".
The 4700 closes the newly transferred file and frees the
<xfr no>. Response is one of the following:

Transfer Complete = FTS(<xfr no>,05,)
Transmissi- Error: FTS(<xfr rno>,83,)
4700 Write Error : FTS(<xfr no>,84,)

wa'l, L k•s:f4•

>>> Chapter 14: Communication with PDPII/B4700 Page 4-15

Abnormal EOF = FTS(<xfr no>,0 4 ,)
indicates that TE14EX wishes to abort the file

transfer. Normal response is "transfer deleted". The 4700
scratches the (partially) transferred file and frees
the <xfr no>. Always responds with

Transfer Deleted = FTS(<xfr no>,06,)

Start Get = FTS(O,02,<xfr spec>)
intiates an IP get operation - to "get" a file back

from 14700 to TENEX. <xfr spec> contains only 4700 file
name and format mode. Normal response is in fact a series of
responses: an "ok to get" acknowledgement, followed directly
by a number of data transfers, followed by normal
eof followeJ finally by "transfer complete". During this
sequence, TENEX stores away the records (contained

in the data transfer messages) and sends no messages to the
4700 unless it wishes to abort the transfer.

As with the send operation, a transfer number is
assigned and returned in the "ok to get" respoinse. The
referenced file must exist. If format mode is F, then the
file must also have lrsc=140 and rpb-5.

The first response is always one of the following:

Ok to Get = FTS(<xfr no>,00,<xfr spec>)
No Room = FTS(O,81,<xfr spec>) as in send
File not Found = FTS(0,82,<xfr spec>)

Following an "ok to get", several (one for each record

in the file) data transfer responses are made by the 4700:

Gotten Record = FTS(<xfr no>,00,<record>)

The 4700 is expected to format the outgoing <record>s
under control of the format established during "start get"
as follows:

A(ASCII): Trailing blanks may be truncated. The
(remaining) characters of the next
4700 record are converted to ASCII
to create the variable portion of the
IP data transfer message.

2;

V•.

>>> Chapter 4: Communication with PDPII/B4700 Page 4-16

-I- ,J

F(Formatted Trailing blanks may be truncated. The
ASCII): (remaining) characters and formatting

information in the next U700 record are
converted into one or more ASA format
effector records arid converted to ASCII.
As in send, the conversion algorithm
needs specification by SAI.

B(Binary): <record> contains exactly irsc bytes

as taken from the next 41700 record.

When 4700 reaches normal eof, it will send

Normal EOF = FTS(<xfr no>,03,0)

to complete the get sequence. Abnormal events
can be indicated at any time in this sequence by sending an
error message instead of the next message in the normal
sequence. They are:

4700 Read Error = FTS(<xfr no>,85,)
Abnormal EOF = FTS(<xfr no>,0 4 ,)

TENEX I/O errors will cause "Abnormal Eof" to be sent to 4700.

3.6.• BNF

(Refer also to BNF in description of CAT)
F=

<xfr no> :: 1121314i15
<xfr spec> ::: <file name>/<fmt spec>
<fmt spec> ::: AIFIB
<record>(6) ::: <char record>!<byte record>
<char record> ::: <IP char>j<char record><IP char>
<byte record> ::: <byte>1<byte record><byte>
<byte> ::= any 8-bit code
<IP char>(6a) ::= <alphanumerl.c>I<blank>k<punctuator>
<blank> ::: a blank
<punctuator> ::= Ill#1$1%l& "I(I) II+ ,I--.I

Notes

(6) Length is recorded in header.
(6a) All caracters with ASCII (octal) codes #040 through

#476.

LI

>>> Chapter 4: Communication with PDP11/B4700 Page 4-17

3.7 BATCH JOB EXECUTION UNDER IP

Running batch jobs under IP consists of
several stages:

4) Transmitting input and command files
2) Submitting the command file to MCPV for execution
3) Retrieving result files

Stages 1) and 3) are accomplished through CAT and FTS; stage 2)
is performed via WOE (Work Order Executive). Two functions are
currently supported:

3. Submit Deck
2. Query Status

Submit Deck = WOE(1,00,<file name>)

causes the referenced file to be converted to an MCPV
pseudo-reader and the resulting reader scheduled for execution.
Normal response is "submit successful" and an ass' >;,ed
<Job id>. The referenced file must have lrsc=80 and rpb=5.
Responds with one of the following:

Submit Successful = WOE(1,00,<Job id>)
File Not Found = WOE(1,82,<file name>)

Job Refused (by 4700IP) = WOE(1,88,<file name>)
4700 I/O Error = WOE(4,88,<file name>)

If submission was successful, WOE polls the MCPV
"mix table" so that when the job is finished it can send
an unsolicted message back to TENEX:

Job Done WOE*(4,00,<Job summary>)

The summary details time and charges for the job.
On completion of the job, h700IP must locate the @<number>
form of the listing file name and change it to the <print label>
located in the label record of the listing file. The "Job done"
message is not sent until this has been successfully
accomplished.

I

>>> Chapter 4: Communication with PDP ;O/B4700 Page 4-18 A
Delete Job z WOE(5,00,<Job id>)

causes the indicated job to be deleted from 4700IP's
tables. This request is sent in "response" to the unsolicited
Job Done message. The job is not deleted by the Job Done
sequence as TENEX might be down. Rather, TENEX sends this
request after all output has been retrieved.
Response is one of the following.:

Job Deleted = WOE(5,06,<Job id>) !
Job Not Found = WOE(5,00,<Job id>) 11

Query Status = WOE(3,0O,<Job id>)
is used to query the status of the referenced job.

Current status definitions are the following:

00 - not found
01 - running
02 - stopped
03 - scheduled
04 - waiting loading
05 - finished

The actual response is always

WOE(3,<Job status>,<Job id>)

where <Job status> is one of the above.

3.7.1 BNF

<job id>(9) ::= <number>
<Job status> ::= 00101102103104105
<Job summary> ::: <Job id>;<cpu time>,<charges>
<cpu time>(7) ::= <number>
<charges>(8) ::= <number>

Notes

(7) Units unknown

(8) Units unknown
(9) Maximum unknown

:1:

>>> Chapter 4: Communication with PDPI,/B4700 Page 4-19

3.8 IP SYSTEM MESSAGES

System messages are defined for the purpose of
exchanging system status information. They cortain no
information relating to any particular file or any parti-
oular job. The following are currently defined:

Echo SYS(0,O0,<record>)
requests the B4700 to respond by simply returning

the request to TENEX unaltered. No side effects are
produced by this message. Expected response is

Echo = SYS(0,00,<record>)

Invalid Message = SYS(1,00,)
as a "request" (sent by TENEX) means that

a response or unsolicited message arrived at TENEX garbled.
Further processing in this event is currently undefined,
but during debugging it will be used to trap internal errors.

If the PDP11 or the Ba700 should receive an illegal

request it will respond instead with the unsolicited message

Invalid Message = SYS*(1,00,)

with similar effect.

Should an error persist on the 50KB line between
the PDP1i and the B4700, the unsolicited message

Communications Error = SYS*(2,00,)

will be sent to TENEX. TENEX will periodically probe the B4700,
and when service resumes, a restart sequence will be initiated
(currently undefined).

When the B4700 operator requests service termination,
the unsolicited message

Service Termination = SYS*(3,00,)

is sent to TENEX. TENEX will not inititate any file transfer
operations or start any jobs until serviue is resumed.

hy

